11 research outputs found

    Automated System for Early Breast Cancer Detection in Mammograms

    Get PDF
    The increasing demand on mammographic screening for early breast cancer detection, and the subtlety of early breast cancer signs on mammograms, suggest an automated image processing system that can serve as a diagnostic aid in radiology clinics. We present a fully automated algorithm for detecting clusters of microcalcifications that are the most common signs of early, potentially curable breast cancer. By using the contour map of the mammogram, the algorithm circumvents some of the difficulties encountered with standard image processing methods. The clinical implementation of an automated instrument based on this algorithm is also discussed

    Readability Enhancement and Palimpsest Decipherment of Historical Manuscripts

    Get PDF
    This paper presents image acquisition and readability enhancement techniques for historical manuscripts developed in the interdisciplinary project ā€œThe Enigma of the Sinaitic Glagolitic Traditionā€ (Sinai II Project).1 We are mainly dealing with parchment documents originating from the 10th to the 12th centuries from St. Cather- ineā€™s Monastery on Mount Sinai. Their contents are being analyzed, fully or partly transcribed and edited in the course of the project. For comparison also other mss. are taken into consideration. The main challenge derives from the fact that some of the manuscripts are in a bad condition due to various damages, e.g. mold, washed out or faded text, etc. or contain palimpsest (=overwritten) parts. Therefore, the manuscripts investigated are imaged with a portable multispectral imaging system. This non-invasive conservation technique has proven extremely useful for the exami- nation and reconstruction of vanished text areas and erased or washed o palimpsest texts. Compared to regular white light, the illumination with speci c wavelengths highlights particular details of the documents, i.e. the writing and writing material, ruling, and underwritten text. In order to further enhance the contrast of the de- graded writings, several Blind Source Separation techniques are applied onto the multispectral images, including Principal Component Analysis (PCA), Independent Component Analysis (ICA) and others. Furthermore, this paper reports on other latest developments in the Sinai II Project, i.e. Document Image Dewarping, Automatic Layout Analysis, the recent result of another project related to our work: the image processing tool Paleo Toolbar, and the launch of the series Glagolitica Sinaitica

    Spectral Imaging Methods Applied to the Syriac Galen Palimpsest

    Get PDF
    The spectral imaging techniques applied to the so-called ā€œSyriac Galen palimpsestā€ in 2008-2010 are reported, including examples of results obtained. The imaging methods were adapted from those used on the Archimedes palimpsest during prior years, and are now comparatively elementary relative to methods that have been developed since. These recent advances will be outlined to demonstrate why improvements would be expected in newer imaging collections and processing

    Ductal carcinoma in situ of the breast (DCIS) with heterogeneity of nuclear grade: prognostic effects of quantitative nuclear assessment

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Previously, 50% of patients with breast ductal carcinoma <it>in situ (</it>DCIS) had more than one nuclear grade, and neither worst nor predominant nuclear grade was significantly associated with development of invasive carcinoma. Here, we used image analysis in addition to histologic evaluation to determine if quantification of nuclear features could provide additional prognostic information and hence impact prognostic assessments.</p> <p>Methods</p> <p>Nuclear image features were extracted from about 200 nuclei of each of 80 patients with DCIS who underwent lumpectomy alone, and received no adjuvant systemic therapy. Nuclear images were obtained from 20 representative nuclei per duct, from each of a group of 5 ducts, in two separate fields, for 10 ducts. Reproducibility of image analysis features was determined, as was the ability of features to discriminate between nuclear grades. Patient information was available about clinical factors (age and method of DCIS detection), pathologic factors (DCIS size, nuclear grade, margin size, and amount of parenchymal involvement), and 39 image features (morphology, densitometry, and texture). The prognostic effects of these factors and features on the development of invasive breast cancer were examined with Cox step-wise multivariate regression.</p> <p>Results</p> <p>Duplicate measurements were similar for 89.7% to 97.4% of assessed image features. For the pooled assessment with ~200 nuclei per patient, a discriminant function with one densitometric and two texture features was significantly (p < 0.001) associated with nuclear grading, and provided 78.8% correct jackknifed classification of a patient's nuclear grade. In multivariate assessments, image analysis nuclear features had significant prognostic associations (p ā‰¤ 0.05) with the development of invasive breast cancer. Texture (difference entropy, p < 0.001; contrast, p < 0.001; peak transition probability, p = 0.01), densitometry (range density, p = 0.004), and measured margin (p = 0.05) were associated with development of invasive disease for the pooled data across all ducts.</p> <p>Conclusion</p> <p>Image analysis provided reproducible assessments of nuclear features which quantitated differences in nuclear grading for patients. Quantitative nuclear image features indicated prognostically significant differences in DCIS, and may contribute additional information to prognostic assessments of which patients are likely to develop invasive disease.</p

    Effect of Quantitative Nuclear Image Features on Recurrence of Ductal Carcinoma In Situ (DCIS) of the Breast

    Get PDF
    BACKGROUND: Nuclear grade has been associated with breast DCIS recurrence and progression to invasive carcinoma; however, our previous study of a cohort of patients with breast DCIS did not find such an association with outcome. Fifty percent of patients had heterogeneous DCIS with more than one nuclear grade. The aim of the current study was to investigate the effect of quantitative nuclear features assessed with digital image analysis on ipsilateral DCIS recurrence.CONCLUSION: Analysis of nuclear features measured by image cytometry may contribute to the classification and prognosis of breast DCIS patients with more than one nuclear grade.Author manuscript. Published in final edited form as: Cancer Informatics 2008:4 99ā€“109.The final published version of this article is located at: http://la-press.com/article.php?article_id=583NIH U56 CA113004; to David E. AxelrodThis work was funded by the New Jersey Commission for Cancer Research 1076-CCRS0, the National Institutes of Health U56 CA113004, the Hyde and Watson Foundation, the Busch Memorial Fund, and the E.B. Fish Research Fund.NJ Commission on Cancer Research 1076-CCR-SO; to David E. Axelro

    An assessment of multimodal imaging of subsurface text in mummy cartonnage using surrogate papyrus phantoms

    Get PDF
    Ancient Egyptian mummies were often covered with an outer casing, panels and masks made from cartonnage: a lightweight material made from linen, plaster, and recycled papyrus held together with adhesive. Egyptologists, papyrologists, and historians aim to recover and read extant text on the papyrus contained within cartonnage layers, but some methods, such as dissolving mummy casings, are destructive. The use of an advanced range of different imaging modalities was investigated to test the feasibility of non-destructive approaches applied to multi-layered papyrus found in ancient Egyptian mummy cartonnage. Eight different techniques were compared by imaging four synthetic phantoms designed to provide robust, well-understood, yet relevant sample standards using modern papyrus and replica inks. The techniques include optical (multispectral imaging with reflection and transillumination, and optical coherence tomography), X-ray (X-ray fluorescence imaging, X-ray fluorescence spectroscopy, X-ray micro computed tomography and phase contrast X-ray) and terahertz-based approaches. Optical imaging techniques were able to detect inks on all four phantoms, but were unable to significantly penetrate papyrus. X-ray-based techniques were sensitive to iron-based inks with excellent penetration but were not able to detect carbon-based inks. However, using terahertz imaging, it was possible to detect carbon-based inks with good penetration but with less sensitivity to iron-based inks. The phantoms allowed reliable and repeatable tests to be made at multiple sites on three continents. The tests demonstrated that each imaging modality needs to be optimised for this particular application: it is, in general, not sufficient to repurpose an existing device without modification. Furthermore, it is likely that no single imaging technique will to be able to robustly detect and enable the reading of text within ancient Egyptian mummy cartonnage. However, by carefully selecting, optimising and combining techniques, text contained within these fragile and rare artefacts may eventually be open to non-destructive imaging, identification, and interpretation

    Eureka! Dublin Core based metadata supports the Archimedes Palimpsest Manuscript Imaging Program

    No full text
    Digital imaging of the Archimedes Palimpsest offers a complex set of metadata challenges. The thousand-year-old manuscript contains the earliest known copies of some of Archimedes unique mathematical works, overwritten with a book of prayer. Digital imaging of this manuscript is yielding a large and rich volume of data. The Archimedes Palimpsest team has developed the Archimedes Palimpsest Metadata Standard using the Dublin Core Metadata Element Set as the core metadata for this effort. The need for spatial metadata to support a complex range of image data has required the integration of metadata standards based on those originally developed for geospatial imaging from space. The result is a unique manuscript imaging standard to support digital "scriptospatial" data accessible by a range of users on the Internet as part of this dynamic, ongoing program

    Effect of Quantitative Nuclear Image Features on Recurrence of Ductal Carcinoma (DCIS) of the Breast

    No full text
    Background Nuclear grade has been associated with breast DCIS recurrence and progression to invasive carcinoma; however, our previous study of a cohort of patients with breast DCIS did not find such an association with outcome. Fifty percent of patients had heterogeneous DCIS with more than one nuclear grade. The aim of the current study was to investigate the effect of quantitative nuclear features assessed with digital image analysis on ipsilateral DCIS recurrence. Methods Hematoxylin and eosin stained slides for a cohort of 80 patients with primary breast DCIS were reviewed and two fields with representative grade (or grades) were identified by a Pathologist and simultaneously used for acquisition of digital images for each field. Van Nuys worst nuclear grade was assigned, as was predominant grade, and heterogeneous grading when present. Patients were grouped by heterogeneity of their nuclear grade: Group A: nuclear grade 1 only, nuclear grades 1 and 2, or nuclear grade 2 only (32 patients), Group B: nuclear grades 1, 2 and 3, or nuclear grades 2 and 3 (31 patients), Group 3: nuclear grade 3 only (17 patients). Nuclear fine structure was assessed by software which captured thirty-nine nuclear feature values describing nuclear morphometry, densitometry, and texture. Step-wise forward Cox regressions were performed with previous clinical and pathologic factors, and the new image analysis features. Results Duplicate measurements were similar for 89.7% to 97.4% of assessed image features. The rate of correct classification of nuclear grading with digital image analysis features was similar in the two fields, and pooled assessment across both fields. In the pooled assessment, a discriminant function with one nuclear morphometric and one texture feature was significantly (p = 0.001) associated with nuclear grading, and provided correct jackknifed classification of a patient's nuclear grade for Group A (78.1%), Group B (48.4%), and Group C (70.6%). The factors significantly associated with DCIS recurrence were those previously found, type of initial presentation (p = 0.03) and amount of parenchymal involvement (p = 0.05), along with the morphometry image feature of ellipticity (p = 0.04). Conclusion Analysis of nuclear features measured by image cytometry may contribute to the classification and prognosis of breast DCIS patients with more than one nuclear grade

    Kaplan-Meier plots for the two image analysis factors significantly (p 0

    No full text
    <p><b>Copyright information:</b></p><p>Taken from "Ductal carcinoma of the breast (DCIS) with heterogeneity of nuclear grade: prognostic effects of quantitative nuclear assessment"</p><p>http://www.biomedcentral.com/1471-2407/7/174</p><p>BMC Cancer 2007;7():174-174.</p><p>Published online 10 Sep 2007</p><p>PMCID:PMC2001197.</p><p></p>001) associated with development of invasive disease in the multivariate assessments: A. Texture (difference entropy) (p < 0.001). B. Texture (contrast) (p < 0.001)
    corecore